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Abstract We propose a new method for the problems of computing free energy and surface
pressure for various statistical mechanics models on a lattice Z

d . Our method is based on
representing the free energy and surface pressure in terms of certain marginal probabilities
in a suitably modified sublattice of Z

d . Then recent deterministic algorithms for computing
marginal probabilities are used to obtain numerical estimates of the quantities of interest.
The method works under the assumption of Strong Spatial Mixing (SSP), which is a form
of a correlation decay.

We illustrate our method on the hard-core and monomer-dimer models, on which we im-
prove several earlier estimates. For example we show that the exponential of the monomer-
dimer coverings of Z

3 belongs to the interval [0.78595,0.78599], improving best previously
known estimate of [0.7850,0.7862] obtained in (Friedland and Peled in Adv. Appl. Math.
34:486–522, 2005; Friedland et al. in J. Stat. Phys., 2009). Moreover, we show that given a
target additive error ε > 0, the computational effort of our method for these two models is
(1/ε)O(1) both for the free energy and surface pressure values. In contrast, prior methods,
such as the transfer matrix method, require exp((1/ε)O(1)) computation effort.

Keywords Partition function · Spatial mixing · Independent sets · Matchings · Algorithm

1 Introduction

It is a classical fact in statistical physics that the logarithm of the partition function of a
general statistical mechanics model on [−n,n]d ⊂ Z

d , appropriately normalized, has a well-
defined limit as n → ∞ [15, 31]. This limit is called free energy or pressure (the difference
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between the two is in the normalization constant). Similarly, the limit of its first order cor-
rection, surface pressure, exists, though such limit depends on the shape of the underlying
finite box and the existing proofs assume soft core interactions, H < ∞ (see Sect. 2) [31].
It is a different matter to compute these limits, and this question interested researchers both
in the statistical physics and combinatorics communities. In very special cases, free energy
can be computed analytically. The most widely known such an example is Fisher-Kasteleyn-
Temperley’s formula for the dimer model on Z

2 [11, 23, 33]. This formula was used in [30]
for obtaining complete parametrization of different Gibbs measures for the pure dimer model
on Z

2. The formula, unfortunately, extends neither to a dimer model in other dimensions nor
to the closely related monomer-dimer model. Another example of an exactly solvable model
is hard-core model on a hexagonal lattice [3]. We refer the reader to [4], as a standard refer-
ence on such models.

Short of these special cases, the existing methods for computing free energy mostly
rely on numerical approximations. These include randomized methods such as Monte-
Carlo [22, 26] and deterministic methods such as transfer matrices. The Monte-Carlo
method can be used to estimate free energy in finite graphs, say [−n,n]d , with some prob-
abilistic approximation guarantee, provided that some underlying Markov chain is rapidly
mixing. One then has to relate a finite graph to infinite lattices to approximate free energy for
an infinite lattice. The drawback of this method is its dependence on the sampling error. The
transfer matrix method, on the other hand is a deterministic method and provides rigorous
deterministic bounds on the free energy. In Sect. 3.3 we show that in order to get a target
additive error ε, the transfer matrix method requires computation time exp(O((1/ε)d−1).
While, for low dimensions d , this is a substantial saving over a brute force method, which
requires time exp(O((1/ε)d), the method stops being effective for larger d . Some additional
computational savings can be achieved using underlying automorphisms group structure,
see Friedland and Peled [14], but we are not aware of any formal analysis of the compu-
tational savings produced by this method. The complexity of computing surface pressure
using the transfer matrix method further increases to exp(O((1/ε)2d−2)), see Sect. 3.3.

The transfer matrix method was used to obtain some of the best known bounds on the
free energy in several models. For the hard-core model (see Sect. 4) with activity λ = 1,
which corresponds to counting independent sets in Z

d , the exponential of the free energy
is known to be in the range [1.503047782,1.5035148], as obtained by Calkin and Wilf [8].
A far more accurate but non-rigorous estimate was obtained by Baxter [5]. This was recently
confirmed rigorously by Friedland et al. [13] with estimate 1.50304808247533. Similarly,
the transfer matrix method was used to compute the free energy of the monomer-dimer
(matchings) model (see Sect. 5). The problem has a long history. Earlier studies include
Hammersley [17, 18], Hammersley and Menon [21], Baxter [2], where some non-rigorous
estimates and crude bounds were obtained. Recently Friedland and Peled [14] obtained rig-
orously a range 0.6627989727 ± 0.0000000001 for d = 2, and [0.7653,0.7863] for d = 3
using the transfer matrix method and Friedland-Tveberg inequality. A tighter lower bound
0.7849602275 was recently obtained using techniques related to the asymptotic matching
conjectures [12]. A bit earlier a similar non-rigorous estimate [0.7833,0.7861] was obtained
in [20], via reduction from the permanent problem. Exact values for monomer-dimer entropy
on two dimensional infinite strip were obtained by Kong [25].

In this paper we propose a new approach for the problem of computing numerically free
energy and surface pressure. Our approach takes advantage of the fact that some of these
models, including the two models above, are in the so-called uniqueness regime. Namely,
the Gibbs measure on the infinite lattice is unique. This is an implication of the Strong Spa-
tial Mixing (SSM) property [7], see Sect. 2.4 for the definition. SSM is a stronger notion
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Fig. 1 Gi is obtained by
removing all dark nodes

of a classical notion of spatial mixing known as Dobrushin-Shlosman condition [9, 15, 31].
The SSM property asserts that the marginal probability that a node v attains a particular
spin value σv is asymptotically independent from the spin configurations for nodes u which
are far away from v. Our main theoretical result is Theorem 1, which provides a simple
representation of the free energy and the surface pressure in terms of such a marginal prob-
ability, provided that the SSM holds. This representation is particularly easy to explain for
the special case of hard-core model in two dimensions, and now we provide a key idea of
our method. Consider the subset Z

2
≺0 of Z

2 consisting of points v = (r,m) with either r < 0
or r = 0,m ≤ 0. Our representation theorem states that the free energy equals log(1/p∗)
where p∗ is the probability that a random independent set in Z

2
≺0 does not contain the ori-

gin (0,0). As the model satisfies SSM (see Sect. 4) this probability is well-defined. The idea
of the proof is simple. Let v1 ≺ v2 ≺ · · · ≺ v(2n+1)2 be the lexicographic ordering of nodes
in [−n,n]2. That is (v1, v2) � (u1, u2) iff v2 > u2 or v2 = u2 and v1 > u1. Observe the fol-

lowing telescoping identity Z−1 = ∏(2n+1)2−1
i=0 Z(i)/Z(i + 1), where Z(i) is the number of

independents sets in the subgraph Gi of [−n,n]2 when all nodes vj , j > i and incident edges
are removed, see Fig. 1. The convention Z(0) = 1 is used. Observe that Z(i)/Z(i + 1) is
the probability that a randomly chosen independent set in Gi+1 does not contain vi+1. This
probability is then approximately p∗ for “most” of the nodes in [−n,n]2. The required rep-
resentation is then obtained by taking logarithms of both sides. Such representation is called
cavity method in statistical physics and has been used heavily for analyzing statistical mod-
els on sparse random graphs, [1, 27–29]. Here due to a particular sequencing of removed
vertices, we call our approach the sequential cavity method. A similar approach based on
successively removing nodes is known for the representation of the relative entropy, see
Proposition 15.16 in [15], though no interpretation of the relative entropy in terms of mar-
ginal probabilities is provided. We are not aware of a similar expression in the context of the
surface pressure. We note that our results provide an independent proof of the existence of
the free energy and surface pressure, not relying on the sub-additivity arguments, albeit in
the special case of SSM.

Theorem 1 reduces the problem of computing the free energy and surface pressure to
the one of computing marginal probabilities, and the latter problem is solved using recent
deterministic algorithms for computing such marginals in certain models satisfying SSM
property [6, 16, 34]. These results are based on establishing even stronger property, namely
the correlation decay on a computation tree property, and lead to efficient algorithms for
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computing such marginals. We have implemented these algorithm for the hard-core [34]
and monomer-dimer [6] models in the special case of Z

d . Using our approach we improve
existing bounds and obtain some new bounds for these models. For example we show that
the exponential of the free-energy of the hard-core model in two dimensions d = 2,3 and
4 are in the ranges [1.503034,1.503058], [1.434493,1.449698] and [1.417583,1.444713],
respectively. While our bounds for the case d = 2 are weaker than the existing bounds, we
are not aware of any bounds for the cases d = 3,4 and suspect that the bounds obtainable
from the transfer matrix method will be substantially weaker than the ones obtained by our
method.

For the case of monomer-dimer model when d = 3 we obtained a range [0.78595,
0.78599], substantially improving earlier bounds [10, 12, 14] (see above). Further we show
that our method provides an exponential improvement over the transfer matrix method in
terms of the computation effort. Specifically, we show that the numerical complexity of
obtaining ε-additive approximation using our approach is (1/ε)O(1) for both free energy
and surface pressure. The constant in O(1) may depend on model parameters and dimen-
sions. For example, for the case of monomer-dimer model, this constant is Cd

1
2 logd , where

C is some universal constant (Proposition 4). This is a exponential improvement over the
computation efforts exp(O((1/ε)d−1) and exp(O((1/ε)2d−2) needed for the transfer matrix
method for computing free energy and surface pressure, respectively. On the other hand our
method is applicable only to the models satisfying SSM property, whereas the transfer ma-
trix method does not require this restriction. Extending our approach to models undergoing
phase transition and thus falling outside of the SSM regime is an interesting open problem.

The rest of the paper is organized as follows. In the following section we provide a nec-
essary background on Gibbs measures on general graphs and lattices, free energy, surface
pressure, and define the Strong Spatial Mixing property. Our main theoretical result is The-
orem 1 which represents free energy and surface pressure in terms of marginal probabilities.
This result and its several variations are stated and proven in Sect. 3. Sections 4 and 5 are
devoted to application of Theorem 1 and its variations to the problem of numerically esti-
mating free energy for hard-core and monomer-dimer models specifically. Additionally, in
these sections we compare the algorithmic complexity of our method with the complexity
of the transfer matrix method. Concluding thoughts and open questions are in Sect. 6.

2 Model, Assumptions and Notations

2.1 Finite and Locally Finite Graphs

Consider a finite or infinite locally finite simple undirected graph G with node set V and
edge set E ⊂ V × V . The locally-finite property means every node is connected to only
finitely many neighbors. The graph is undirected and simple (no loops, no multiple edges).
For every v,u ∈ V let d(u, v) be the length (number of edges) in the shortest path connecting
u and v. For every node v, we let N(v) stand for the set of neighbors of v: N(v) = {u :
(u, v) ∈ E}. We will write NG(v) when we need to emphasize the underlying graph G. The
quantity � = �G � maxv |N(v)| is called the degree of the graph. For every r ∈ Z+ let
Br(v) = {u : d(v,u) ≤ r}. For every set A ⊂ V , let Br(A) = ⋃

v∈A Br(v). Thus locally finite
property means |Br(v)| < ∞ for all v, r . Given A ⊂ V , let ∂A = {v ∈ Ac : N(v) ∩ A �= ∅}
and let ∂rA = ∂Br(A). For every subset A ⊂ V , we have an induced subgraph obtained by
taking nodes in A and all edges (v,u) ∈ E ∩ A2. The corresponding edge set of the induced
graph is denoted by E(A).
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Let R+ (Z+) denote the set of all non-negative real (integer) values. Let R>0(Z>0) be
the set of all positive real (integer) values. Our main example of an infinite locally-finite
graph is the d-dimensional lattice Z

d with V = {(v1, . . . , vd) : vi ∈ Z and E = {(v,u) ∈
V 2 : ‖v − u‖ = 1}, where ‖w‖ = ∑

1≤j≤d |wj |. We denote the origin (0,0, . . . ,0) by 0 for
short. Given a vector a = (a1, . . . , ad) ∈ R

d+, and v = (v1, . . . , vd) ∈ Z
d , let Ban(v) = {u ∈

Z
d : |uj − vj | ≤ ajn, j = 1,2, . . . , d}. In the special case G = Z

d , v = 0, we write Br

instead of Br(0) and Ban instead of Ban(0). For each j ≤ d, k ∈ Z+, let Z
d
j,k,+ = {v ∈ Z

d :
vj ≤ k},Z

d
j,k,− = {v ∈ Z

d : vj ≥ −k}. Each of these is a d-dimensional half-plane in Z
d .

Let ≺ denote a lexicographic full order on Z
d . Namely, v ≺ u iff either ud > vd or ∃k ∈

{1,2, . . . , d − 1} such that uk > vk and vj = uj , j = k + 1, . . . , d . For every v ∈ Z
d and

k = 1,2, . . . , d , let Z
d≺v = {u ∈ Z

d : u ≺ v} ∪ {v}. Similarly we define Z
d
j,k,+,≺v and Z

d
j,k,−,≺v

with Z
d
j,k,+ and Z

d
j,k,− replacing Z

d .
Throughout the paper we write f (n) = O(g(n)) and f (n) = o(g(n)), n ∈ Z+ if |f (n)| ≤

C|g(n)|, respectively f (n)/g(n) → 0, for all n, for some constant C. This constant may in
general depend on model parameters such as H,h (see the next section) or dimension d .
However, in some places the constant is universal, namely independent from any model
parameters. We will explicitly say so if this is the case.

2.2 Gibbs Measures

Consider a finite set of spin values χ = {s1, . . . , sq}, a Hamiltonian function H : χ2 →
R∪{∞}, and an external field h : χ → R∪{∞}. Given a graph G = (V ,E) we consider the
associated spin configuration space � = χV equipped with product σ -field F . If the graph
G is finite, a probability measure P on (�, F ) is defined to be Gibbs measure if for every
spin assignment (sv) ∈ χV

P(σv = sv, ∀v ∈ V ) = Z−1 exp

(

−
∑

(v,u)∈E

H(sv, su) −
∑

v∈V

h(sv)

)

, (1)

where Z is the normalizing partition function:

Z =
∑

(sv)∈χV

exp

(

−
∑

(v,u)∈E

H(sv, su) −
∑

v∈V

h(sv)

)

.

We will often write PG and ZG in order to emphasize the underlying graph. The case
H(a,a′) = ∞ corresponds to a hard-core constraint prohibiting assigning a ∈ χ and a′ ∈ χ

to neighbors. The possibility of such hard-core constraints is important for us when we dis-
cuss the problems of counting independent sets and matchings.

When G is infinite, a probability measure P(·) is defined to be Gibbs measure, if it satis-
fies the following spatial Markovian property. For every finite A ⊂ V and every spin assign-
ment (sv) ∈ χ |∂A| on the boundary ∂A of A, the conditional probability measure P(·|(sv))

on the finite graph (V (A),E(A)) induced by A is a Gibbs measure with the same H as the
original graph and external field h′ given as h′

v(a) = h(a) + ∑
u∈N(v)\A H(su, a) for every

a ∈ χ . Here the external field becomes node dependent, but the Hamiltonian remains the
same for all nodes. Since every node u ∈ N(v) \ A belongs to ∂A and thus its spin value su

is well defined. This is called spatial Markovian property of Gibbs measure. One can con-
struct Gibbs measures as a weak limit of Gibbs measures on cylinder sets in F obtained from
finite induced subgraphs of G, see [15, 31] for details. Generally there are multiple Gibbs
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measures and the space of Gibbs measures of G is denoted by M or MG. We say that the
model (G,H,h) is in the uniqueness regime if M consists of a unique measure M = {P}.
Most of the results in this paper correspond to the uniqueness case, and more specifically
to the case of Strong Spatial Mixing (SSM) defined below. Given a model (G,H,h) and
a subset A ⊂ V , we have a naturally defined induced submodel on the induced subgraph
G(A) = (V (A),E(A)), given by the same χ,H and h (but different partition function). In
order to emphasize the underlying subgraph G we write, with abuse of notation, ZA and PA

for the partition function and the Gibbs measure on the subsystem (G(A),H,h), when it is
unique. By default we drop the subscript when the underlying graph is the entire lattice Z

d .
The definitions above are “node” centered: the spins are associated with nodes of a graph.

In order to study the monomer-dimer model we need to consider a similar “edge” model
where spins are associated with edges. Thus given a finite graph G = (V ,E), and a finite set
of spin values χ , we consider a probability space � = χ |E|. Then (1) is restated as follows.
Write e ∼ e′ if edges e, e′ are distinct and incident (share a node). For every spin assignment
(se) ∈ χ |E| we assign probability measure

P(σe = se, ∀e ∈ E) = Z−1 exp

(

−
∑

e∼e′∈E

H(se, se′) −
∑

e∈E

h(se)

)

. (2)

It is clear that “edge” model can be reduced to “node” model by considering a line graph
of G: the nodes of this graph are edges of G and two nodes e, e′ form an edge in the line
graph if and only if e ∼ e′. For simplicity, however, we prefer not to switch to the line graph
model.

2.3 Free Energy, Pressure and Surface Pressure

Given G = Z
d , Hamiltonian H and an external field h, consider an arbitrary infinite se-

quence of finite subsets 0 ∈ 	1 ⊂ 	2 ⊂ · · · ⊂ Z
d , such that the sequence rn � max{r : Br ⊂

	n} diverges to infinity as n → ∞. Consider the corresponding sequence of Gibbs mea-
sures P	n and partition functions Z	n on the graphs induced by 	n. It follows from the
sub-additivity property of partition functions that the limit

P(d,H,h) � lim
n→∞

logZ	n

|	n| (3)

exists and is independent from the choice of the sequence of subsets [15, 31]. This
quantity is called pressure. Given a positive β > 0 one usually also considers limits
limn→∞ logZ	n/(β|	n|) where H and h are replaced by βH and βh, respectively. The
corresponding limit is called free energy. For our purposes, this difference is insubstantial,
as it is just a matter of redefining H,h and changing the normalization.

The first order correction to the limit (3) is known as surface pressure and is defined as
follows. Unlike pressure, this quantity is “shape” dependent. In this paper we only consider
the case of the rectangular shape, although our results can be extended to more complicated
shapes as well. Given a vector a = (ai) ∈ R

d
>0, let Aj(a) �

∏
k �=j (2ak), j = 1,2, . . . , d, and

let A(a) = ∑
j≤d Aj (a). Observe that surface area of Ban (the number of boundary nodes in

Ban) is A(a)nd−1 + o(nd−1). The surface pressure is defined as

sP(d,H,h, a) � lim
n→∞A−1(a)n−d+1

(

logZBan(0) − nd P(d,H,h)
∏

1≤i≤d

(2ai)

)

. (4)
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The surface pressure is interpreted as the first order correction of the free energy, scaled
by the surface area. The existence of this limit is a classical fact [31] for the case
maxs,s′∈χ H(s, s ′) < ∞. The hard-core case H = ∞ is trickier and we are not aware of
results on the existence of the limit for this case. Our proofs however imply the existence of
the limit under the assumption of SSM, see below.

2.4 Strong Spatial Mixing

The following technical assumption is needed for our analysis. The assumption essentially
says that there is always a choice of a spin value s∗ ∈ χ which allows any other choice of
spin values for its neighbors without rendering the Hamiltonian infinite.

Assumption 1 There exist s∗ ∈ χ such that maxs∈χ |H(s, s∗)| < ∞.

The assumption implies that under any Gibbs measure, for every node v

c∗ � min
(su)

P(σv = s∗|σu = su,∀u ∈ N(v)) > 0 (5)

where the minimum is over all possible spin assignments (su) ∈ χ |N(v)| of the neighbors
of v. We now introduce the Strong Spatial Mixing assumption, which, in particular, implies
the uniqueness of the Gibbs measure on an infinite graph. We first informally discuss this
notion. Loosely speaking, a model (G,H,h) exhibits just spatial mixing if for every finite set
A ⊂ G the joint probability law for spins in A is asymptotically independent from the values
of spins which are far away from A. A form of this condition is known to be equivalent to
the uniqueness of the Gibbs measure. Instead, a strong spatial mixing means the same except
that values for any other subset B ⊂ Z

d are allowed to be fixed. In other words, strong spatial
mixing is spatial mixing, but for the reduced model on V \ B when values of spins in B are
fixed and values of the external field h on the remaining graph are appropriately modified.
Strong spatial mixing is strictly stronger than spatial mixing (hence the separate definition),
see [7] for counterexamples and discussion.

We now introduce the definition formally.

Definition 1 (G,H,h) satisfies the Strong Spatial Mixing property if for every finite
set X ⊂ V (G), possibly infinite set Y ∈ V (G) there exists a function R(r) satisfying
limr→∞ R(r) = 0, such that for every positive integer r

max
∥
∥P(σv, v ∈ X|σv = s1

v , v ∈ Y ;σv = s2
v , v ∈ ∂rX)

− P(σv, v ∈ X|σv = s1
v , v ∈ Y ;σv = s3

v , v ∈ ∂rX)
∥
∥

VAR
≤ R(r),

where the maximum is over all possible spin assignments (s1
v ) ∈ χ |Y |, (s2

v ), (s
3
v ) ∈ χ |∂rX|,

and ‖ · ‖VAR denotes the variational distance of the Gibbs measure restricted to the subset X.
(G,H,h) satisfies exponential strong spatial mixing if there exist κ, γ > 0 such that R(r) ≤
κ exp(−γ r) for all r ≥ 0.

It is known that if (G,H,h) exhibits SSM, then the Gibbs measure is unique: M =
{P}, [7]. We note that in this paper we will exclusively consider the case |X| = 1.
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3 Sequential Cavity Method

In this section we present a theoretical result which serves as a basis for our subsequent
computational work. Specifically, we provide the representation of the free energy and sur-
face pressure on Z

d in terms of some conditional marginal probabilities P(σ0 = s|·) defined
on suitably modified subsets of Z

d ,Z
d
j,k,+,Z

d
j,k,−. The idea is to sequentially remove nodes

from a rectangle Ban one by one and observe that the log-partition function can be written
in terms of the log-marginal probabilities (cavity) of the removed nodes.

3.1 Representation Theorem

Given a graph G = (V ,E) with some full order �, a node v and s ∈ χ , let Ev,s denote the
event “σu = s for all u � v,u ∈ V ”. By convention we assume that Ev,s is the full event �,
if the set u � v,u ∈ V is empty. In the special case when G = Z

d , v = 0 and � is the
lexicographic order, this event is denoted by Es , see Fig. 2 for the case d = 2. We remind the
reader, that we drop the subscripts in PG,ZG when the underlying graph is Z

d .

Theorem 1 Suppose (Zd ,H,h) satisfies the SSM property and the Assumption 1 holds.
Then

P(d,H,h) = − log P(σ0 = s∗|Es∗) − dH(s∗, s∗) − h(s∗). (6)

If, in addition, the SSM is exponential, then for every a = (aj ) ∈ R
d
>0

sP(d,H,h, a)

= −H(s∗, s∗) +
∑

1≤j≤d

Aj (a)

A(a)

∞∑

k=0

(
2 log P(σ0 = s∗|Es∗) − log P

Z
d
j,k,+

(σ0 = s∗|Es∗)

− log P
Z

d
j,−k,−

(σ0 = s∗|Es∗)
)
. (7)

In particular, the infinite sum is convergent.

Remark

• We stress that our proof does not rely on the existence of a limit in (3) and thus provides
an independent proof for it, albeit in the restricted case of SSM. Preempting the formal

Fig. 2 Event Es∗ on Z
2. Every

dark node is assigned spin s∗
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discussion, the convergence of the infinite sum in (7) is an almost immediate consequence
of the exponential SSM, which gives

|P
Z

d
j,k,+

(σ0 = s∗|Es∗) − P(σ0 = s∗|Es∗)| ≤ κ exp(−γ k).

A similar conclusion for difference of the logarithms is obtained then using the Assump-
tion 1. This observation implies that ε-additive approximation of this infinite sum is ob-
tained by considering the partial sum with first O(log(1/ε)) terms. As we shall discuss
in the following subsection, the main import from this observation is that the overhead of
computing surface pressure vs free energy is very small.

• A representation similar to the one of (6) is known for the relative entropy, see Proposi-
tion 15.16 in [15]. Here it is important for us that the representation connects free energy
and marginal probabilities, since, as is discussed in the latter part of the paper, we have
tools for numerical computation of the marginal probabilities approximately. We are not
aware of an expression similar to (7) existing in the prior literature.

Proof We first prove (6). Let v1 � v2 � · · · � v|Bn| be the labeling of nodes in Bn according
to the lexicographic order. Note that the number of edges in Bn is d|Bn| + o(|Bn|). We have

PBn(σv = s∗,∀v ∈ Bn)

= Z−1
Bn

exp
(−d|Bn|H(s∗, s∗) − o(|Bn|)H(s∗, s∗) − |Bn|h(s∗)

)
,

from which we infer that

Z−1
Bn

= exp
(
d|Bn|H(s∗, s∗) + o(|Bn|)H(s∗, s∗) + |Bn|h(s∗)

)

× PBn(σv = s∗,∀v ∈ Bn). (8)

On the other hand, by the telescoping property

PBn(σv = s∗,∀v ∈ Bn) =
∏

v∈Bn

PBn(σv = s∗|σu = s∗, ∀u � v,u ∈ Bn)

=
∏

v∈Bn

PBn(σv = s∗|Ev,s∗). (9)

Fix ε > 0 and find r = r(ε) such that according to Definition 1, R(r) < ε for X =
{0}, Y = {u � 0}. Let Bo = {v ∈ Bn : Br(v) ⊂ Bn}. Observe that |Bo|/|Bn| → 1 as n → ∞.
By the choice of r we have for every v ∈ Bo

∣
∣P(σv = s∗|Ev,s∗) − PBn(σv = s∗|Ev,s∗)

∣
∣ ≤ ε. (10)

By translation invariance we have

P(σv = s∗|Ev,s∗) = P(σ0 = s∗|Es∗).

For every v ∈ Bn \ Bo we have the generic lower bound (5)

PBn(σv = s∗|Ev,s∗) ≥ c∗ (11)
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which is strictly positive by Assumption 1. A similar inequality with the same constant holds
for P(σ0 = s∗|Es∗). Combining this with (8) and (9) we obtain

Z−1
Bn

= exp
(
d|Bn|H(s∗, s∗) + o(|Bn|)H(s∗, s∗) + |Bn|h(s∗)

)

×
∏

v∈Bo

PBn(σv = s∗|Ev,s∗)
∏

v∈Bn\Bo

PBn(σv = s∗|Ev,s∗)

≥ exp
(
d|Bn|H(s∗, s∗) + o(|Bn|)H(s∗, s∗) + |Bn|h(s∗)

)

× (P(σ0 = s∗|Es∗) − ε)|Bo|(c∗)|Bn\Bo|.

Since |Bo|/|Bn| → 1 as n → ∞ and c∗ > 0, then we obtain

lim inf
n→∞

logZ−1
Bn

|Bn| ≥ dH(s∗, s∗) + h(s∗) + log(P(σ0 = s∗|Es∗) − ε)

Recalling P(σ0 = s∗|Es∗) ≥ c∗ > 0, since ε was arbitrary, we conclude

lim inf
n→∞

logZ−1
Bn

|Bn| ≥ H(s∗, s∗)d + h(s∗) + log P(σ0 = s∗|Es∗).

Similarly we show

lim sup
n→∞

logZ−1
Bn

|Bn| ≤ H(s∗, s∗)d + h(s∗) + log P(σ0 = s∗|Es∗),

where for the case v ∈ Bn \ Bo
n we use a trivial inequality PBn(σv = s∗|Ev,s∗) ≤ 1 in place

of (11). We obtain

lim
n→∞

logZ−1
Bn

|Bn| = H(s∗, s∗)d + h(s∗) + log P(σ0 = s∗|Es∗). (12)

This concludes the proof of (6).
Now we establish (7). Thus consider a rectangle Ban. The proof is based on a more

refined estimates for the elements of the telescoping product (9) with Ban replacing Bn. We
begin by refinement of (8). The number of edges in Ban is d|Ban| − A(a)nd−1 + o(nd−1).
Repeating the derivation of (8) and (9), we obtain

Z−1
Ban

= exp
(
d|Ban|H(s∗, s∗) − A(a)nd−1H(s∗, s∗) + h(s∗)|Ban| + o(nd−1)

)

×
∏

v∈Ban

PBan(σv = s∗|Ev,s∗). (13)

Let

Bo
an = {v ∈ Ban : |ain − vi |, |ain + vi | ≥ C logn,1 ≤ i ≤ d},

and for each j = 1, . . . , d and 0 ≤ k < C logn let

Ban,j,k,+ = {v ∈ Ban : vj = �ajn� − k; |ain − vi |, |ain + vi | ≥ C logn, i �= j},
Ban,j,k,− = {v ∈ Ban : vj = −�ajn� + k; |ain − vi |, |ain + vi | ≥ C logn, i �= j}.
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Here C > 0 is a large yet unspecified constant. In other words, Ban,j,k,+∪Ban,j,k,− consists of
nodes which have distance k from the boundary of Ban in the j coordinate, but have distance
at least C logn in all the other coordinates i �= j . Observe that the sets Ban,j,k,+,Ban,j,k,−
are non-intersecting, for sufficiently large n. Observe also that

∣
∣
∣
∣Ban \

(

Bo
an ∪

⋃

1≤j≤d,0≤k≤C logn

(Ban,j,k,+ ∪ Ban,j,k,−)

)∣
∣
∣
∣

= O(nd−2 log2 n). (14)

For every v ∈ Bo
an we have by exponential SSM

∣
∣P(σv = s∗|Ev,s∗) − PBan(σv = s∗|Ev,s∗)

∣
∣ ≤ κ exp(−γC logn) = O(n−γC).

By translation invariance we have

P(σv = s∗|Ev,s∗) = P(σ0 = s∗|Es∗).

Recalling P(σ0 = s∗|Es∗) ≥ c∗, we obtain using the Taylor expansion,
∣
∣log PBan(σv = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)

∣
∣ = O(n−γC). (15)

Fix v ∈ Ban,j,k,+. Since vj = �ajn� − k and for every i �= j , vi is at least C logn away
from the boundary of Ban, then by the exponential SSM property we have

∣
∣PBan(σv = s∗|Ev,s∗) − P

Z
d
j,�aj n�,+

(σv = s∗|Ev,s∗)
∣
∣ ≤ κ exp(−γC logn) = O(n−γC),

(see Fig. 3 for the two-dimensional illustration with j = 2). Recalling vj = �ajn� − k and
using translation invariance we have

P
Z

d
j,�aj n�,+

(σv = s∗|Ev,s∗) = P
Z

d
j,k,+

(σ0 = s∗|Es∗)

Fig. 3 Event Es∗ on Z
2
2,�a2n�,+ . Every dark node is assigned spin s∗
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Using again the Taylor expansion, we obtain
∣
∣log PBan(σv = s∗|Ev,s∗) − log P

Z
d
j,k,+

(σ0 = s∗|Es∗)
∣
∣ = O(n−γC). (16)

Similarly, if v ∈ Ban,j,k,−, then
∣
∣PBan(σv = s∗|Ev,s∗) − P

Z
d
j,−�aj n�,−

(σv = s∗|Ev,s∗)
∣
∣ ≤ exp(−γC logn) = O(n−γC).

By translation invariance and since vj = −�ajn� + k, then

P
Z

d
j,−�aj n�,−

(σv = s∗|Ev,s∗) = P
Z

d
j,−k,−

(σ0 = s∗|Es∗),

and again applying Taylor expansion
∣
∣log PBan(σv = s∗|Ev,s∗) − log P

Z
d
j,−k,−

(σ0 = s∗|Es∗)
∣
∣ = O(n−γC). (17)

We now take log of both sides of (13) and divide by nd−1 to obtain

− logZBan + |Ban|P(d,H,h)

nd−1

= |Ban|
nd−1

P(d,H,h) + |Ban|
nd−1

dH(s∗, s∗) − A(a)H(s∗, s∗) + |Ban|
nd−1

h(s∗) + o(1)

+ n−d+1
∑

v∈Bo
an

log PBan(σv = s∗|Ev,s∗)

+ n−d+1
∑

1≤j≤d

∑

k≤C logn

∑

v∈Ban,j,k,+
log PBan(σv = s∗|Ev,s∗)

+ n−d+1
∑

1≤j≤d

∑

k≤C logn

∑

v∈Ban,j,k,−
log PBan(σv = s∗|Ev,s∗)

Here we use (14) and the fact PBan(σv = s∗|Ev,s∗) ≥ c∗ > 0 for all v. Applying (15)

∑

v∈Bo
an

log PBan(σv = s∗|Ev,s∗)

= |Bo
an| log P(σ0 = s∗|Es∗) + |Bo

an|O(n−γC)

= |Ban| log P(σ0 = s∗|Es∗) − log P(σ0 = s∗|Es∗)

×
∑

1≤j≤d

∑

k≤C logn

(|Ban,j,k,+| + |Ban,j,k,+|) + o(nd−1),

where we used (14) in the last inequality and assume that C > 1/γ . Using the established
identity (6) we conclude

− logZBan + |Ban|P(d,H,h)

nd−1

= −A(a)H(s∗, s∗)

+ n−d+1
∑

1≤j≤d

∑

k≤C logn

∑

v∈Ban,j,k,+

(
log PBan(σv = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)

)
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+ n−d+1
∑

1≤j≤d

∑

k≤C logn

∑

v∈Ban,j,k,−

(
log PBan(σv = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)

)

+ o(1)

Further applying (16) and (17) and using C > 1/γ , we obtain the following expression

−A(a)H(s∗, s∗)

+ n−d+1
∑

1≤j≤d

∑

k≤C logn

|Ban,j,k,+|(log P
Z

d
j,k,+

(σ0 = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)
)

+ n−d+1
∑

1≤j≤d

∑

k≤C logn

|Ban,j,k,−|(log P
Z

d
j,−k,−

(σ0 = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)
)

+ o(1)

We have

|Ban,j,k,+| = Aj(a)nd−1 + o(nd−1),

|Ban,j,k,−| = Aj(a)nd−1 + o(nd−1).

The resulting expression is then

−A(a)H(s∗, s∗)

+
∑

1≤j≤d

Aj (a)
∑

k≤C logn

(
log P

Z
d
j,k,+

(σ0 = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)
)

+
∑

1≤j≤d

Aj (a)
∑

k≤C logn

(
log P

Z
d
j,−k,−

(σ0 = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗)
)

+ o(1)

Applying the exponential SSM property and the Taylor expansion, we have for every k ≥
C logn

∣
∣log P

Z
d
j,k,+

(σ0 = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗))
∣
∣ ≤ κ exp(−γ k)

∣
∣log P

Z
d
j,−k,−

(σ0 = s∗|Ev,s∗) − log P(σ0 = s∗|Es∗))
∣
∣ ≤ κ exp(−γ k).

This means that we can replace the sums
∑

k≤C logn with infinite sums
∑

k≥0, with a resulting
error O(exp(−γC logn) = O(n−γC). Dividing by A(a) we obtain the result. �

3.2 Extensions and Variations

In this subsection we establish several variations of the first part of Theorem 1, namely the
representation (6) of the free energy in terms of the marginal probability. First we extend
identity (6) for the case when we do not necessarily have SSM, but instead have an upper
or lower bound on marginal probability P(σ0 = s∗|Es∗). In this case we obtain an analogue
of (6) in the form of inequalities. These inequalities will be useful for obtaining numerical
bounds on free energy for hard-core model in dimensions d = 3,4 in Sect. 4.
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Given r > 0 consider an arbitrary spin assignment (su) ∈ χ |∂Br | which is consistent with
the event Es∗ . Namely, su = s∗ for all u � 0, u ∈ ∂Br . Let pmax(r) (pmin(r)) be the maximum
(minimum) of PBr (σ0 = s∗|Es∗) when we vary over all such assignments.

Corollary 1 For every (Zd ,H,h) and r ≥ 0

− logpmax(r) − dH(s∗, s∗) − h(s∗) ≤ P(d,H,h)

≤ − logpmin(r) − dH(s∗, s∗) − h(s∗). (18)

While the result holds for arbitrary r the quality of the bounds presumably improves with
increasing r . We will see in Sect. 4 that in some cases pmax(r) and pmin(r) are fairly close
for large r even though the model is outside of provably exponential SSM regime.

Proof The proof is a minor variation of the proof of (6). Instead of estimate (10) we use
pmin(r) ≤ PBn(σv = s∗|Ev,s∗) ≤ pmax(r) for every n > r . �

Our second variation is a “chess-pattern” version of Theorem 1 where in representa-
tion (9) we sequentially remove only vertices with even sum of coordinates. As it turns out
this version provides substantial gains in computing numerical estimates of free energy both
for hard-core and monomer-dimer models, though we do not have a theoretical explanation
for this gain.

Let Z
d
even = {v = (v1, . . . , vd) ∈ Z

d : ∑
i vi is even}. Similarly define Z

d
odd. Given a sub-

graph G = (V ,E) of Z
d , let Ev,s,even denote the event σu = s,∀u � v,u ∈ V ∩ Z

d
even. The

special case v = 0 is denoted by Es,even. See Fig. 4 for this chess-pattern version of the
event Es∗ .

Theorem 2 Suppose (Zd ,H,h) satisfies the SSM property and the Assumption 1 holds.
Then

P(d,H,h) = −1

2
log P(σ0 = s∗|Es∗,even) + 1

2
log

(∑

s∈χ

exp(−2dH(s, s∗) − h(s))

)

. (19)

Fig. 4 Event Es∗,even on Z
2.

Every dark node is assigned
spin s∗
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Proof Let Bn,even = Bn ∩ Z
d
even. Observe that every node v ∈ Bn \ Bn,even has only neighbors

in Bn,even. Let �(v) denote the degree of v in Bn. As a result,

PBn(σv = s∗,∀v ∈ Bn,even) = Z−1
Bn

∏

v∈Bn\Bn,even

∑

s∈χ

exp(−�(v)H(s, s∗) − h(s)),

from which we obtain

Z−1
Bn

=
∏

v∈Bn\Bn,even

(∑

s∈χ

exp(−�(v)H(s, s∗) − h(s))

)−1

PBn(σv = s∗,∀v ∈ Bn,even).

On the other hand, by telescoping property

PBn(σv = s∗,∀v ∈ Bn,even) =
∏

v∈Bn,even

PBn(σv = s∗|σu = s∗, ∀u � v,u ∈ Bn,even)

=
∏

v∈Bn,even

PBn(σv = s∗|Ev,s∗,even). (20)

The remainder of the proof is very similar to the proof of Theorem 1 and details are omitted.
Notice that for |Bn| − o(|Bn|) nodes in Bn, the degree �(v) = 2d . Then in place of (12) we
obtain

lim
n

logZ−1
Bn

|Bn| = − lim
n→∞

|Bn \ Bn,even|
|Bn| log

(∑

s∈χ

exp(−2dH(s, s∗) − h(s))

)

+ lim
n→∞

|Bn,even|
|Bn| log P(σ0 = s∗|Es∗,even)

= −1

2
log

(∑

s∈χ

exp(−2dH(s, s∗) − h(s))

)

+ 1

2
log P(σ0 = s∗|Es∗,even). �

Now let us present a version of Theorem 1 for the model (2) where spins are assigned
to edges rather than nodes. We need this for application to the monomer-dimer model. Let
Ev,s,edges denote the event σu,w = s,∀u � v,w ∈ N(u), and let Ev,s,edges,even denote the event
σu,w = s,∀u � v,u ∈ Z

d
even,w ∈ N(u). Let Es,edges, Es,edges,even denote the same events when

v = 0.

Theorem 3 Consider a model (Zd ,H,h) given by (2) with spins assigned to edges. Suppose
(Zd ,H,h) satisfies the SSM property and the Assumption 1 holds. Then

P(d,H,h) = − log P(σ(0,v) = s∗,∀v ∈ N(0)|Es∗,edges)

− d(2d − 1)H(s∗, s∗) − dh(s∗) (21)

= −1

2
log P(σ(0,v) = s∗,∀v ∈ N(0)|Es∗,edges,even)

− d(2d − 1)H(s∗, s∗) − dh(s∗). (22)
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Remark Contrast this result with Theorem 2. There the extra term log(
∑

s∈χ ·) appears since
every odd node surrounded by even nodes with preset spin value s∗ still has χ choices for
the spin selection. For the edge version this is not the case: all edges are preselected to take
spin values s∗.

Proof We first prove (21). Let E(Bn) denote the edge set of Bn. Note that E(Bn) = d|Bn|+
o(|Bn|) and the number of edges with 4d − 2 incident edges is also d|Bn| + o(|Bn|). The
number of pairs of incident edges is then d(2d − 1)|Bn| + o(|Bn|). We have

PBn(σe = s∗,∀e ∈ E(Bn))

= Z−1
Bn

exp
(−d(2d − 1)|Bn|H(s∗, s∗) − o(|Bn|)H(s∗, s∗) − d|Bn|h(s∗)

)
.

On the other hand, by telescoping property

PBn(σe = s∗,∀e ∈ E(Bn))

=
∏

v∈Bn

PBn(σ(v,u) = s∗,∀u ∈ N(v)|σ(u,w) = s∗,∀u � v,w ∈ N(u),u,w ∈ Bn)

=
∏

v∈Bn

PBn(σ(v,u) = s∗,∀u ∈ N(v)|Ev,s∗,edges).

The remainder of the proof of (21) is similar to the one of Theorem 1 and is omitted.
Turning to (22), observe that every edge in Z

d has exactly one end point in Z
d
even. Then

we have again by the telescoping property

PBn(σe = s∗,∀e ∈ E(Bn))

=
∏

v∈Bn,even

PBn(σ(v,u) = s∗,∀u ∈ N(v)|σ(u,w) = s∗,

∀u � v,w ∈ N(u),u ∈ Bn,even,w ∈ Bn)

=
∏

v∈Bn,even

PBn(σ(v,u) = s∗,∀u ∈ N(v)|Ev,s∗,edges,even).

The remainder of the proof of (21) is similar to the one of Theorem 1. The fact
|Bn,even|/|Bn| → 1/2 as n → ∞ leads to a factor 1/2 in (22). �

3.3 Applications and the Numerical Complexity

Theorem 1 reduces the problem of computing P and sP to the problem of computing condi-
tional marginal probabilities P(σ0 = s∗|Es∗). This is certainly not the only way to represent
free energy and surface pressure in terms of marginal probabilities. For example, consider a
modified system (G, βH,βh) on a finite graph G, and observe that

d logZG

dβ
= −

∑

v∈V

E[h(σv)] −
∑

(v,u)∈E

E[H(σv, σu)],
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both expectations are taken wrt the Gibbs measure P. Thus knowing the marginal probabili-
ties P(σv) and joint probabilities P(σv, σu), (v,u) ∈ E lets us recover logZG approximately
in principle. Unfortunately, this means we have to integrate the answers over β ∈ [0,1],
which in practice has to be approximated by summation. In order then to guarantee the tar-
get level of accuracy, one would have to control the derivatives of marginal probabilities
wrt β . Additionally, one would have to compute marginal probabilities for a whole range of
β , over which the integration takes place. The advantage of the representation (6) and (7) is
that it allows us computing free energy and surface pressure by computing only one marginal
probability P(σ0 = s∗|Es∗). In this paper we will compute these marginal quantities approx-
imately using recent deterministic algorithms for computing such marginal probabilities in
general graphs, where appropriately defined computation tree (see following sections) sat-
isfies exponential SSM. As we will see below, when we have such a property, our method
provides an additive ε approximation of free energy in time (1/ε)O(1), where the constant
O(1) may depend on the model parameters and d . Let us now compare this performance
with the performance of the transfer matrix method. While we are not aware of any sys-
tematic numerical complexity analysis of the transfer matrix method, it can be deduced
from the following considerations. The transfer matrix method is based on first computing
the partition function on a strip [−n,n]d−1 × Z. The latter is done by constructing certain
|χ |(2n+1)d−1

by |χ |(2n+1)d−1
transfer matrix. For the hard-core case with λ = 1 (see Sect. 4)

the matrix is 0 − 1 with 1 corresponding to allowed pair of neighboring configurations and
0 corresponding to pairs of configurations which are not allowed. The spectral radius of the
transfer matrix is then used to deduce the growth rate of the partition function, namely the
free energy. Constructing such matrix takes time exp(O(nd−1)). Since the partition function
on [−n,n]d−1 × Z converges to the one of Z

d at the rate O(1/n) [31], then in order to
achieve an additive error ε > 0, one needs exp(O((1/ε)d−1)) computation effort.

Suppose one then wishes to use this method to approximate the surface pressure with an
additive error ε. What is the required numerical effort? We are not aware of applications of
the transfer matrix method for computing surface pressure. Thus the reasonable alternative
approach is to (1) select a rectangle an for some large value n, (2) Compute the partition
function Zan in this rectangle using perhaps the brute force method and (3) Compute the ap-
proximation P̂ of the free energy P using perhaps the transfer matrix method. The approxi-
mate surface pressure is then obtained from the fact that the convergence rate in the limit (4)
is O(1/n) [31]. Let us show that this approach requires exp(O((1/ε)2d−2)) numerical effort
in order to obtain ε additive approximation, regardless of how quickly one is able to com-
pute Zan. Indeed, observe that this approach leads to an error nd |P̂ − P|/nd−1 = n|P̂ − P|.
Thus for the target ε additive error, we need to set n ≥ 1/ε. But this further requires that
(1/ε)|P̂ − P| = O(ε), namely |P̂ − P| = O(ε2). Thus we need to achieve ε2 additive error
accuracy in estimating the free energy. This requires exp(O((1/ε)2d−2)) per our earlier cal-
culations, and the assertion is established. This is a stark contrast with complexity (1/ε)O(1)

of the method proposed in this paper both for free energy and surface pressure for the cases
of hard-core and monomer-dimer models. However, one should note that our method takes
explicit advantage of the exponential SSM, while the transform matrix method does not rely
on this assumption.

4 Hard-Core (Independent Set) Model

The hard-core lattice gas model, commonly known as independent set model in combi-
natorics, is given by χ = {0,1},H(0,0) = H(0,1) = H(1,0) = 0,H(1,1) = ∞, h(0) =
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0, h(1) = β for some parameter β . Case of interest is β ≤ 0 as it corresponds to Gibbs mea-
sure putting larger weight on larger cardinality independent set. Choosing s∗ = 0 we obtain
that Assumption 1 holds.

It is common to set λ = exp(−β) > 0 and let λ be the parameter of the hard-core model.
This parameter is usually called activity. Note that in terms of λ, for every finite graph G

ZG =
∑

λ|{v∈V :σv=1}| (23)

where the sum is over all spin configurations (σv) ∈ {0,1}V such that σvσu = 0 for all
(v,u) ∈ E. Equivalently, a subset of nodes I ⊂ V (G) is called an independent (also some-
times called a stable set) if for no edge (u, v) we have both u and v belong to I . Then we
may rewrite (23) as

ZG =
∑

I

λ|I | (24)

where the summation is over all independent sets of G. The summation in (24) is sometimes
called an independent set polynomial in the combinatorics literature. From now on we let I

denote the random independent set selected according to a Gibbs measure (multiply defined
if there are many Gibbs measures). In the case of finite graph G, for every independent set
I we have

PG(I = I ) = Z−1
G

λ|I |.

The special case λ = 1 corresponds to a uniform distribution on the set of all independent
sets in G. We denote the free energy and surface pressure on Z

d by P(d,λ) and sP(d,λ, a),
respectively. In the special case λ = 1, the free energy is also the entropy of the Gibbs
distribution, since it is uniform. Conditioning on spins taking value s∗ = 0 simplifies signif-
icantly in the context of hard-core model as the following proposition shows, a simple proof
of which we include for completeness.

Proposition 1 If a hard-core model on a graph G = (V ,E) satisfies SSM for some λ, then
so does any subgraph of G. The same assertion applies to exponential SSM. Moreover, for
every W1,W2 ⊂ V (G) the following identity holds with respect to the unique Gibbs measure.

PG(v ∈ I |W1 ∩ I = ∅,W2 ⊂ I ) = P
Ĝ
(v ∈ I ), (25)

for every v ∈ V \ (W1 ∪ B1(W2)), where Ĝ is the subgraph induced by nodes in V \ (W1 ∪
B1(W2)).

Proof Fix any positive integer r and consider any spin assignment (su), u ∈ ∂Br(v) \ (W1 ∪
B1(W2)). Extend this to a spin assignment to entire ∂Br(v) by setting su = 1 (that is u ∈ I ),
for u ∈ ∂Br(v) ∩ W2 and su = 0 (that is u /∈ I ) for u ∈ ∂Br(v) ∩ (W1 ∪ (B1(W2) \ W2)). Call
this spin assignment S . Applying spatial Markovian property we have

PG(σv = 0|σu = 0, u ∈ W1, σu = 1, u ∈ W2, S)

= PG(σv = 0, σu = 0, u ∈ W1, σu = 1, u ∈ W2, |S)

PG(σu = 0, u ∈ W1, σu = 1, u ∈ W2|S)

=
∑

I∈I1
λ|I |

∑
I∈I2

λ|I | ,
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where I1 is the set of independent sets in Br(v) such that v /∈ I, I ∩W1 = ∅,W2 ⊂ I and u ∈
I ∩ ∂Br(v) iff su = 1 (according to S ). The set I2 is defined similarly, except the condition
v /∈ I is dropped. Then the ratio is equal to

∑
I∈I1

λ|I |−|W2|
∑

I∈I2
λ|I |−|W2| =

∑
I∈I3

λ|I |
∑

I∈I4
λ|I |

where I4 is the set of independent subsets of Br(0)\ (W1 ∪B1(W2)) such that u ∈ I ∩∂Br(v)

iff su = 1, and I3 is defined similarly, except in addition v /∈ I for every I ∈ I3. We recognize
this ratio as P

Ĝ
(σv = 0|S). We conclude

PG(σv = 0|σu = 0, u ∈ W1, σu = 1, u ∈ W2, S) = P
Ĝ
(σv = 0|S).

Now consider any induced subgraph G1 of G and any two sets W1,W2 in G1. Applying a
similar argument we obtain

PG1(σv = 0|σu = 0, u ∈ W1, σu = 1, u ∈ W2, S)

= PG(σv = 0|σu = 0, u ∈ W1 ∪ (V \ V1), σu = 1, u ∈ W2, S)

= P
Ĝ1

(σv = 0|S)

where Ĝ1 is induced by nodes V1 \ (W1 ∪ B1(W2)). By SSM property, the second quantity
has a limit as r → ∞ which is independent from assignment S on the boundary ∂Br(v).
Therefore the same applies to the first and third quantities. The first conclusion implies that
G1 satisfies SSM. The second conclusion gives (25) when applied to G1 = G. �

In light of Proposition 1 we obtain the following simplification of Theorems 1 and 2 in
the hard-core case. Let

Z
d
≺0,even = Z

d
≺0 ∪ {u ∈ Z

d
odd : 0 ≺ u},

see Fig. 4.

Corollary 2 Suppose the hard-core model on Z
d satisfies SSM for a given λ. Then

P(d,λ) = − log P
Z

d≺0
(0 /∈ I ) (26)

= −1

2
log P

Z
d≺0,even

(0 /∈ I ) + 1

2
log(1 + λ). (27)

Thus we now focus on developing an algorithm for numerically estimating marginal
probabilities appearing in (26) and (27).

4.1 Recursion, Sequential Cavity Algorithm and Correlation Decay

Let us now introduce a recursion satisfied by the hard-core model. This identity in a different
form using a self-avoiding tree construction was established recently by Weitz [34]. We
repeat here some of the developments in [34], with some minor modifications, which are
indicated as necessary.
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Theorem 4 Given a finite graph G = (V ,E) and v ∈ V , let N(v) = {v1, . . . , vk}. Then

PG(v /∈ I ) = 1

1 + λ
∏

1≤i≤k PGi−1(vi /∈ I )
(28)

where Gi is the graph induced by V \ {v, v1, . . . , vi}, G0 is induced by V \ {v} and∏
1≤i≤k = 1 when k = 0.

Proof We have

ZG =
∑

I :v /∈I

λ|I | +
∑

I :v∈I

λ|I | =
∑

I :I⊂V \{v}
λ|I | + λ

∑

I :I⊂V \{v,v1,...,vk }
λ|I | (29)

where everywhere the sums are over independent sets I . Note that
∑

I :I⊂V \{v} λ
|I | = ZG0

and
∑

I :I⊂V \{v,v1,...,vk } λ
|I | = ZGk

. Dividing both sides of the identity (29) by ZG0 we obtain

ZG

ZG0

= 1 + λ
ZGk

ZG0

It is immediate that ZG0/ZG = PG(v /∈ I ). In order to interpret ZGk
/ZG0 similarly we

rewrite it as

ZGk

ZG0

=
k∏

i=1

ZGi

ZGi−1

and note that ZGi
/ZGi−1 = PGi−1(vi /∈ I ). Combining these observations we obtain (28). �

The identity (28) suggests a recursion for computing marginal probabilities PG(v /∈ I )

approximately. The idea is to apply the identity recursively several times and then set the
initial values arbitrarily. One then establishes further that a correlation decay property holds
on this recursion which implies that any initialization of the values at the beginning of the re-
cursion leads to approximately correct values at the end of the recursion. This principle was
underlying the algorithm proposed in [34] for computing approximately the number of inde-
pendent sets in general graphs. The original approach taken in [34] was slightly different—
first a self-avoiding tree corresponding to the recursive computation tree described above is
constructed. Then it is shown that P(v /∈ I ) on this tree equals the same probability in the
underlying graph. The approach proposed here is slightly simpler as it bypasses the extra
argument of showing equivalence of two marginal probabilities.

We now provide details of this approach. Given a finite graph G, for every subgraph
Ĝ = (V̂ , Ê) of G, every vertex v ∈ V̂ and every t ∈ Z+ we introduce a quantity 


Ĝ
(v, t)

defined inductively as follows.



Ĝ
(v, t) =

⎧
⎪⎨

⎪⎩

1, t = 0;
(1 + λ)−1, t > 0, N(v) = ∅,

(1 + ∏
1≤i≤k 


Ĝi−1
(vi, t − 1))−1, t > 0, N(v) = {v1, . . . , vk} �= ∅.

(30)

Here again Ĝ0 is induced by V̂ \ {v} and Ĝi is induced by V̂ \ {v, v1, . . . , vi}. The recur-
sion (30) is naturally related to the identity (28). Specifically if 


Ĝi−1
(vi, t −1) = P

Ĝi−1
(vi /∈

I ) for all i then 

Ĝ
(v, t) = P

Ĝ
(v /∈ I ). However, this will not occur in general, as we set
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Ĝ
(v,0) = 1, due to the lack of knowledge of actual values of the corresponding probabili-

ties.
Similarly to 
, we introduce values �Ĝ(v, t) with the only exception that �

Ĝ
(v,0) = 0

for all Ĝ = (V̂ , Ê) and v ∈ V̂ . The following lemma follows from Theorem 4 and the defi-
nitions of 
 and � using a simple induction argument

Lemma 1 For every v and t ∈ Z+

�G(v,2t) ≤ PG(v /∈ I ) ≤ 
G(v,2t),


G(v,2t + 1) ≤ PG(v /∈ I ) ≤ �G(v,2t + 1)

Next we provide bounds on the computational effort required to compute 
 and � .

Lemma 2 For every finite graph G with degree ≤ �, v ∈ G and t , the values 
G(v, t),

�G(v, t) can be computed in time exp(O(t log�)), where the constant in O(·) is universal.

Proof The result follows immediately from the recursive definitions of 
 and � . �

The crucial correlation decay property is formulated in the following proposition.

Theorem 5 ([34]) For every � ≥ 3 and for every

λ < (� − 1)�−1/(� − 2)�, (31)

there exists ρ = ρ(λ,�) < 1 such that for every finite graph G = (V ,E) with degree at most
� and every v ∈ V, t ∈ Z+:

|log
G(v, t) − log�G(v, t)| ≤ log(1 + λ)ρt . (32)

As a result, G satisfies exponential SSM for λ satisfying (31).

Proof The details of the proof can be found in [34]. It is shown there that the absolute value
in (32) is upper bounded by the same quantity, when applied to G = T�,t —the �-regular
depth-t tree. Then a classical results by Spitzer [32] and Kelly [24] are invoked to show the
existence of ρ. The existence of ρ then implies SSM via Proposition 1 and observing that
changing values of σ for nodes u which have distance bigger than t from a given node v,
does not affect the values of 
G(v, t) and �G(v, t). �

4.2 Free Energy and Surface Pressure on Z
d . Numerical Results

We are now equipped to obtain bounds on the free energy and the surface pressure for the
hard-core model on Z

d .
Denote by 
(t) and �(t) the values of 
G(v, t),�G(v, t) when applied to a graph G =

Z
d
≺0 ∩ Bn, for sufficiently large n and v = 0. Observe that the values 
G(v, t),�G(v, t) are

the same for all values of n sufficiently larger than t (for example n ≥ t + 1 suffices). Thus
the notations are justified. The following relations are the basis for computing bounds on the
free energy and surface pressure.
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Corollary 3 For every t ∈ Z+ and λ satisfying (31)

− log
(2t) ≤ P(d,λ) ≤ − log�(2t), (33)

− log�(2t + 1) ≤ P(d,λ) ≤ − log
(2t + 1). (34)

Proof By Theorem 5 we have exponential SSM. Thus

P
Z

d≺0
(0 /∈ I ) = lim

n→∞ PBn∩Z
d≺0

(0 /∈ I ).

Bn ∩ Z
d
≺0 is finite graph for which bounds from Lemma 1 are applicable. �

Our algorithm for computing P(d,λ) and sP(Zd , λ) is based on relations (33) and (34),
and will be called Sequential Cavity Algorithm or shortly SCA.

We have numerically computed values 
(t),�(t) for the cases d = 2,3,4 using the
chessboard pattern method. Our results provide the following bounds on the free energy for
the case λ = 1. Since previous bounds were stated in terms of exp(P(d,1), we do the same
here:

1.503034 ≤ exp(P(2,1)) ≤ 1.503058,

1.434493 ≤ exp(P(3,1)) ≤ 1.449698,

1.417583 ≤ exp(P(4,1)) ≤ 1.444713.

The computations were done at the level t = 27 for the case d = 2, t = 16 for the case d = 3
and t = 12 for the case d = 4. Our bounds for the case d = 2 are weaker than a more accurate
estimate 1.50304808247533 first derived by Baxter [5] and recently rigorously confirmed
by Friedland et al. [13]. However, we are not aware of any estimates for the cases d = 3,4
and we believe that our bounds are the best known. We have not done computations of the
surface pressure and we are not aware of any previously existing benchmarks. Note that in
the case d = 3 we have � = 6, and λ = 1 no longer satisfies (31). Thus we have no guarantee
that SCA will provide converging estimates as t increases. The correctness of our bounds
for this case is guaranteed by Corollary 1. It is encouraging to see that the bounds are close
and based on this fact we conjecture that λ = 1 corresponds to the uniqueness regime.

It is instructive to compare our numerical results, which were obtained using the chess-
pattern approach (identity (27)) with results which could be obtained directly from (26).
The computations based on (26) for the case d = 2, λ = 1 at depth t = 12 lead to bounds
1.0942 ≤ exp(P(2,1)) ≤ 1.8377. At the same time, the computations using chess pat-
tern method at the depth only t = 3 already lead to a much tighter bounds 1.4169 ≤
exp(P(2,1)) ≤ 1.5565.

Notice, that while Theorem 5 is not used in computing actual bounds on the free energy
and surface pressure, it provides the guarantee for the quality of such bounds. Let us use it
now to analyze the computation effort required to obtain a particular level of accuracy in
bounds.

Proposition 2 For every d,λ < (d − 1)d−1/(d − 2)d and ε > 0 SCA produces an ε-additive
estimate of P(d,λ) and sP(Zd , λ) in time ( 1

ε
)O(1), where the constant in O(·) depends on λ

and d .
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Proof Applying Theorem 5, an additive error ε is achieved provided that log(1+λ)ρt < ε or
t ≥ log(log(1 + λ)/ε) log−1(1/ρ) = O(log(1/ε)). Hence the result for free energy follows
from Lemma 2.

For surface pressure observe that applying Theorem 5

∣
∣log P

Z
d≺0

(σ0 = 0) − log P
Z

d
j,k,+,≺0

(σ0 = 0)
∣
∣ ≤ (1 + λ)ρk.

A similar bound holds for P
Z

d
j,−k,−,≺0

(σ0 = 0). Thus if we take k0 such that log(1 +
λ)ρk0/(1 − ρ) < ε, then the partial sum in (7) corresponding to terms k ≥ k0 is at most
2ε. The required k0 is O(log((1 − ρ)−1ε−1 log(1 + λ))/ log(1/ρ)) = O(log(1/ε)). For the
remaining terms k < k0 we compute P

Z
d
j,k,+,≺0

(σ0 = 0) and P
Z

d
j,−k,−,≺0

(σ0 = 0) using SCA

with accuracy ε̂ = ε/k0. Since log(1/ε̂) = log(1/ε) + log log(1/ε) = O(log(1/ε)), the re-
sult then follows from our estimate for computing P(d,λ). �

5 Monomer-Dimer (Matching) Model

The monomer-dimer model is defined by spin values S = {0,1} assigned to edges of a graph
G = (V ,E). A set of edges M ⊂ E is a matching if no two edges in M are incident. Some-
times term partial matching is used to contrast with full matching, which is a matching with
size |V |/2 (namely every node is incident to an edge in the matching). The edges of M are
called dimers and nodes in V which are not incident to any edge in M are called monomers.
We set H(0,0) = H(0,1) = H(1,0) = h(0) = 0,H(1,1) = ∞, h(1) = β . The Gibbs mea-
sure is defined via (2). As in the case of hard-core model, it is convenient to introduce
λ = exp(−β) > 0. Similarly to the hard-core model we have for finite graphs G

ZG =
∑

M

λ|M| (35)

were the summation is over all matchings in G. The summation in (35) is called a matching
polynomial in the combinatorics literature. We denote by M a random matching chosen
according to the Gibbs measure, when it is unique. In the case of finite graphs

PG(M = M) = Z−1
G

λ|M|.

The monomer-dimer model is a close relative of the hard-core model, even though its
properties are substantially different. For example this model does not exhibit a phase tran-
sition for finite λ and is always in the uniqueness regime [19], though it does undergo phase
transition in the pure dimer case λ = ∞. Moreover, it satisfies the SSM property for all ac-
tivities λ as we shall shortly see. Corresponding analogues of Proposition 1 will be stated
later once exponential SSM is asserted.

5.1 Recursion, Sequential Cavity Algorithm and Correlation Decay

We now establish an analogue of (28) for the monomer-dimer model. The proof of this result
can be found in [6] and is omitted. It is similar to the proof of (28). In the following, with a
slight abuse of notation we write v ∈ M if matching M contains an edge incident to v.
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Theorem 6 [6] For every finite graph G = (V ,E) and v ∈ V

PG(v /∈ M) = 1

1 + λ
∑

u∈NG(v) PG0(u /∈ M)
(36)

where G0 is induced by V \ {v} and
∑

u∈NG(v) = 0 when v is an isolated node.

The further development in this subsection mirrors the one of Sect. 4.1, yet the conclusion
will be different—the monomer-dimer model exhibits SSM for all values of λ. This will
lead to an algorithm for computing the free energy and surface pressure for monomer-dimer
model for every value λ > 0.

Given a finite graph G, for every subgraph Ĝ = (V̂ , Ê) of G, every node v ∈ Ĝ and
every t ∈ Z+ we introduce a quantity 


Ĝ
(v, t) defined inductively as follows. In the context

of monomer-dimer model this quantity stands for (approximate) probability that v /∈ M in
the subgraph Ĝ.



Ĝ
(v, t) =

⎧
⎪⎨

⎪⎩

1, t = 0 or N(v) = ∅;
(1 + λ

∑
1≤i≤k 
G0(vi, t − 1))−1,

t > 0 and N(v) = {v1, . . . , vk} �= ∅.

(37)

Here Ĝ0 is induced by V̂ \ {v}. If 
G0(vi, t − 1) = PG0(vi /∈ M) for all i then 
G(v, t) =
PG(v /∈ M).

Similarly, introduce �Ĝ(v, t) with the only exception that �
Ĝ
(v,0) = 0 for all Ĝ and v.

The following proposition follows from Theorem 6 and the definitions of 
 and � using a
simple induction argument.

Lemma 3 For every v ∈ V, t ∈ Z+

�G(v,2t) ≤ PG(v /∈ M) ≤ 
G(v,2t),


G(v,2t + 1) ≤ PG(v /∈ M) ≤ �G(v,2t + 1).

Next we provide bounds on the computational effort required to compute 
 and � .

Lemma 4 For every finite graph G with degree �, v ∈ G and t , the values 
G(v, t),

�G(v, t) can be computed in time exp(O(t log�)), where the constant in O(·) is univer-
sal.

Proof The result follows immediately from the recursive definitions of 
 and � . �

The correlation decay property is formulated in the following proposition which is proved
in [6]. Let

ρ =
(

1 − 2√
1 + λ� + 1

)1/2

. (38)

Theorem 7 ([6]) For every � ≥ 2, λ > 0, for every graph G with degree at most � and
every node v

| log
G(v, t) − log�G(v, t)| ≤ ρt log(1 + λ�). (39)

As a consequence, every graph G satisfies exponential SSM for all λ > 0.
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We now state the analogues of Proposition 1 and Corollary 2. The proofs are very similar
and omitted. Given any set W ⊂ E, let N(W) = W ∪ {e : ∃e′ ∈ W,e ∼ e′}.

Proposition 3 Given a graph G = (V ,E), for every mutually exclusive sets A,W1,W2 ⊂ E

and spin assignment (se), e ∈ A on A the following identity holds with respect to the unique
Gibbs measure.

PG(1{e ∈ M} = se,∀e ∈ A|W1 ∩ M = ∅,W2 ⊂ M)

= P
Ĝ
(1{e ∈ M} = se,∀e ∈ A), (40)

where Ĝ is the subgraph obtained from G by removing edges W1 ∪ N(W2).

We use notations P(d,λ) and sP(d,λ) for the free energy and the surface pressure for
the monomer-dimer model on Z

d as well. As a corollary of Theorem 3, and Proposition 3
we obtain

Corollary 4 For every λ > 0 and d

P(d,λ) = − log P
Z

d≺0
(0 /∈ M) = −1

2
log P

Z
d≺0,even

(0 /∈ M). (41)

5.2 Free Energy and Surface Pressure on Z
d . Numerical Results

We now obtain bounds on the free energy and surface pressure for the monomer-dimer
model on Z

d . Again denote by 
(t) and �(t) the values of 
G(v, t),�G(v, t) when applied
to any graph G = Z

d
≺0 ∩Bn in the monomer-dimer context, for sufficiently large n and v = 0.

The relations (33) and (34) hold as well and the proof is very similar.
Our algorithm for computing P(d,λ) and sP(Zd , λ) is again based on computing 
(t)

and �(t) and is again called Sequential Cavity Algorithm (SCA). We now report numer-
ical results on computing P(d,λ). We have computed values 
(t),�(t) for d = 2,3,4
and a range of values λ using the chessboard pattern method. Our upper and lower bounds
for free energy are presented in Table 1. The depth levels t = 14,9,7 were used for the
cases d = 2,3,4. As expected, our bounds are high quality for lower λ and then degrade
as λ → ∞. Each computation run took about 3 minutes on a workstation and we have not
made an attempt to obtain very accurate bounds for each value λ. However for the case
of interest λ = 1 we ran our algorithm for larger depths. For the case d = 2 a very accu-
rate rigorous estimate 0.6627989727 ± 0.0000000001 is due to Friedland and Peled [14],
shown non-rigorously earlier by Baxter [2]. We have not made an attempt to improve this
bound. However for the case d = 3 we can significantly improve the best known bound
0.7850 ≤ P(3,1) ≤ 0.7863 (see introduction). At depth t = 19 we obtained estimates
0.78595 ≤ P(3,1) ≤ 0.78599, which is a two orders of magnitude improvement. We have
also obtained bounds for d = 4 for which no prior computations are available. We obtained
0.8797 ≤ P(4,1) ≤ 0.8812. The computations were done at depth t = 14.

The following proposition gives a bound on the numerical complexity of SCA.

Proposition 4 For every d ≥ 2, λ > 0, ε > 0 SCA produces an ε-additive estimate of

P(d,λ) and sP(d,λ, a) in time log(1 + 2λd)(1/ε)O((λd)
1
2 logd), where the constant in O(·)

is universal.
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Table 1 Upper (U) and lower (L) bounds on free energy for d = 2,3,4

λ d = 2 L d = 2 U d = 3 L d = 3 U d = 4 L d = 4 U

0.1000 2.3219 2.3219 2.3311 2.3311 2.3399 2.3399

0.2000 1.6802 1.6802 1.7096 1.7096 1.7363 1.7363

0.3000 1.3451 1.3451 1.3959 1.3959 1.4395 1.4395

0.4000 1.1361 1.1361 1.2050 1.2050 1.2621 1.2624

0.5000 0.9934 0.9934 1.0770 1.0770 1.1442 1.1453

0.6000 0.8902 0.8902 0.9853 0.9855 1.0599 1.0629

0.7000 0.8122 0.8122 0.9164 0.9171 0.9961 1.0025

0.8000 0.7513 0.7513 0.8627 0.8642 0.9457 0.9568

0.9000 0.7026 0.7026 0.8196 0.8224 0.9044 0.9215

1.0000 0.6628 0.6628 0.7840 0.7887 0.8695 0.8937

1.5000 0.5389 0.5392 0.6677 0.6890 0.7475 0.8163

2.0000 0.4742 0.4758 0.5982 0.6436 0.6671 0.7840

3.0000 0.4056 0.4139 0.5079 0.6055 0.5564 0.7586

4.0000 0.3665 0.3855 0.4455 0.5908 0.4793 0.7492

5.0000 0.3390 0.3704 0.3972 0.5836 0.4208 0.7448

6.0000 0.3174 0.3614 0.3575 0.5797 0.3740 0.7423

7.0000 0.2993 0.3558 0.3239 0.5772 0.3354 0.7408

8.0000 0.2837 0.3519 0.2947 0.5757 0.3026 0.7399

9.0000 0.2697 0.3493 0.2691 0.5746 0.2743 0.7392

10.0000 0.2570 0.3473 0.2465 0.5738 0.2496 0.7387

15.0000 0.2064 0.3426 0.1643 0.5719 0.1621 0.7376

20.0000 0.1685 0.3409 0.1147 0.5713 0.1110 0.7372

30.0000 0.1151 0.3397 0.0627 0.5708 0.0592 0.7369

40.0000 0.0811 0.3393 0.0386 0.5706 0.0359 0.7368

50.0000 0.0592 0.3391 0.0259 0.5705 0.0239 0.7368

Again for constant λ,d we obtain performance (1/ε)O(1), which is a qualitative improve-
ment over the numerical effort exp(O((1/ε)d−1)) of the transfer matrix method.

Proof We have � = 2d . Applying Theorem 7, an additive error ε is achieved provided that
ρt log(1 + 2λd) < ε or

t ≥ (− logρ)−1

(

log
1

ε
+ log log(1 + 2λd)

)

.

Applying (38) we have logρ = O( 1√
1+2λd+1

) = O( 1√
λd

). The result for P(d,λ) then follows
from this estimate and Lemma 4. The result for sP(d,λ) is established using the same line
of reasoning as for Proposition 2. �

6 Conclusions

Several statistical mechanics models besides hard-core and monomer-dimer models fit our
framework, yet were not discussed in this paper. One such model is Ising model and its
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generalization, Potts (coloring) model [31]. The Ising model satisfies our Assumption 1 by
making s∗ = 1 or −1. Thus the representation Theorem 1 holds, provided (exponential) SSM
holds. However, in order to turn it into a useful method for obtaining provably converging
bounds, we need an analogue of Theorems 5 and 7, namely the correlation decay property
on a computation tree. Such a result is indeed established in [16], but for an Ising model with
very weak interactions. Thus it is of interest to strengthen the result in [16] and obtain some
concrete estimates for the Ising model on Z

d . We are not aware of earlier benchmark results
for this model. The situation with the Potts model is similar with the exception of hard-
core Potts model (proper coloring). In this case the required s∗ does not exist, as for every
color s,H(s, s) = ∞. However, our method can be extended by considering for example a
periodic coloring of nodes v � 0 or using the chess-pattern version Theorem 2 of our main
result. The required correlation decay result is established in [16] for the case q > 2.86�

and q,� appropriately large constants. Thus in order to turn this result into a useful method
for computing free energy and surface pressure for coloring model on Z

d , one needs to
deal with these constants explicitly. Also a convenient monotonicity present in the hard-
core and monomer-dimer models is lost in the Potts model case, which makes application
of Corollary 1 harder.
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